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nisms in the interior of the computational domain. The major
difficulties present in our configuration are that, first, two orUsing a barotropic coastal ocean numerical model, several radia-

tion boundary conditions at the open boundaries of the computa- more wave modes may approach the boundary simultaneously
tional domain are examined. The focus is on how well they can and, second, the waves generally have the form of dispersing
transmit coastally trapped waves. As well as radiation boundary wave packets. Both these factors imply that the phase speed
conditions of the Orlanski type, three new modifications are intro-

of the waves is not necessarily known in advance, and henceduced and found to give a better performance. Q 1996 Academic

the radiation boundary conditions we consider are of the typePress, Inc.

introduced by Orlanski [3] (see the discussion below follow-
ing (1.3)).

1. INTRODUCTION There have been several studies of radiation boundary condi-
tions of the Orlanski type. That which is closest to ours is due

In the numerical simulation of coastal ocean circulation open to Chapman [1], who, for a computational domain similar to
boundary conditions inevitably occur and they can play a crucial ours, studied the merits of several open boundary conditions
role in determining the validity of the results. Ideally numerical including those of the Orlanski type. He considered three basic
open boundary conditions should allow fluid motions generated experiments, using the linearized shallow water equations on
in the computational domain and which are felt at the open an f-plane. In the first, a localized sea surface elevation is
boundary to pass through the boundary without influencing imposed initially and then relaxes by wave propagation. In the
the interior solution. This is a long-standing and well-known other two experiments a uniform wind stress is imposed, either
problem and, since the advent of numerical ocean models, there in the longshore direction or in the cross-shelf direction. He
have been several solutions proposed. Similar problems arise found that the Orlanski radiation boundary condition was gener-
in limited-area atmospheric models and in other fluid dynamic ally superior to the alternatives considered. Prior to this, Miller
flows. However, none of the various open boundary condi- and Thorpe [4] modified the original Orlanski radiation bound-
tions in common use appear to be universally and ideally satis- ary condition, which was proposed for a leapfrog time-stepping
factory (e.g., Chapman [1] and Röed and Cooper [2]). In gen- scheme, by implementing it instead in the context of upstream
eral, while some open boundary conditions are satisfactory in differencing. Their procedure is similar to that which we shall
a particular context they may prove unreliable in a different adopt in our discussion. They tested their implementation
context. against other variants for an evolving density current and found

The main motivation of this study is to identify and test their method gave some improvement. Camerlengo and
radiation boundary conditions suitable for use in storm surge O’Brien [5] proposed a simplification of the Orlanski radiation
numerical models. We consider the usual shallow water equa- boundary condition appropriate for limited-region oceanic and
tions in a computational domain which contains a coastline atmospheric models. They found their version satisfactory for
and, importantly, has bottom topography which varies in the Kelvin waves, but it did not perform so well for Rossby waves.
offshore direction and is uniform in the longshore direction. These and other studies have been reviewed by Röed and Coo-
This configuration allows for a full spectrum of coastally per [2]. They conclude that ‘‘the response [in the computational
trapped waves propagating in the longshore direction, as well domain] is highly sensitive to the implemented open boundary
as the usual gravity-wave transients. Our concern is to find conditions,’’ and emphasize the necessity to construct the radia-
radiation boundary conditions which allow these waves to pass tion boundary condition to fit the problem being considered.
through the boundary with the minimum of distortion and re- They also discuss radiation boundary conditions for forced
flection. To focus on the performance of the radiation boundary waves (see also Röed and Smedstad [6]) and oblique waves,

aspects which we shall not pursue here.conditions we generate the waves by localized forcing mecha-
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a b

FIG. 1. (a) Computational domain in x, y coordinates. (b) Depth profile.

Next, we introduce the shallow water equations, which are, Here c is the phase speed of a wave approaching the boundary.
in standard notation, The crucial question here is the choice of the speed c. In early

numerical models c was chosen according to the known wave
dynamics of the problem being considered. In the context of

ut 1 uux 1 vuy 2 fv 1 gzx 5
t (x)

W

H
, (1.1a) the shallow water equations the traditional choice is c 5

Ïgh, where h is the local water depth (e.g., Wurtele et al. [7],
Davies and Furnes [8], or Fandry [9]), which corresponds tovt 1 uvx 1 vvy 1 fu 1 gzy 5

t (y)
W

H
, (1.1b)

the assumption that the waves approaching the boundary are
surface gravity waves. However, in problems such as the pres-zi 1 (Hu)x 1 (Hv)y 5 0. (1.1c)
ent, where h is a function of y with the consequence that, as
well as surface gravity waves, there is a full spectrum of coast-Here H 5 h 1 z, (u, v) are the mean velocity components in
ally trapped waves, this choice is not appropriate. Instead wethe along-shelf (x) and cross-shelf (y) directions, f is the Coriolis
follow Orlanski [3] and compute c from values of z near theparameter, g is the gravitational acceleration, t (x,y)

W are the wind
boundary. We consider three implementations of the Orlanskistress components, h(y) is the undisturbed water depths, and
radiation boundary conditions similar to those introduced byz is the free surface elevation. The equations are solved numeri-
Miller and Thorpe [4]. In addition we introduce three newcally in a rectangular domain (see Figs. 1a, b). One boundary
modifications of the Orlanski method.(y 5 0) is the coastline, and the contours for the bottom topogra-

Before proceeding to describe the numerical implementationphy are parallel to this boundary, with the depth increasing
of (1.3), we should comment that (1.3) is itself an ad hocoffshore. For simplicity, we also place a rigid boundary offshore
approximation, whose justification is based mainly on the ex-at y 5 2W. In general, this should be an open boundary, but
pectation that waves approaching the boundary will be approxi-since most of the wave energy is in coastally trapped waves
mately linear, nondispersive and propagating normal to thewhich propagate in the alongshore direction, this simplification
boundary. Attempts to construct exact radiation boundary con-is justified here. The boundary conditions at these rigid bound-
ditions, or rational approximations to an exact condition, havearies are then
been discussed by Engquist and Magda [10] and Keller and
Givoli [11] for the two-dimensional wave equation, Hagstromhv 5 0 at y 5 0, 2W. (1.2)
and Hariharan [12] for the spherically symmetric gas dynamic
equations and Higdon [13] for elastic wave propagation. How-In the longshore direction, z, u, v R 0 as uxu R y at any finite
ever, even the shallow-water equations (1.3) seem too complextime. But, in the computational domain, uxu # L we shall need
for this approach to be pursued here, and hence our strategy isartificial boundary conditions at uxu 5 6L. These will be intro-
to regard (1.3) as the given radiation boundary condition andduced below. The problem specification is completed by the
then to examine its numerical implementation. But in doing soformulation of initial conditions, and by the specification of
we hasten to point out that our method of numerical implemen-the wind stress. This we shall do in Section 3.
tation reveals that (1.3) can be regarded as an interpolationOn the open boundaries x 5 L and x 5 2L, we use the
formula (see Röed and Cooper [2]).conventional radiation boundary condition,

In the interior of the computational domain we use a numeri-
cal method developed by Tang et al. [14] (see also Tangzt 1 czx 5 0 at x 5 L, 2L. (1.3)
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independent of n and i, respectively. Hence, to first order
z n11

B is expected to be linearly dependent on z n
B21 and z n

B (i.e.,
all points in box A), so that

z n11
B21 5 rz n

B21 1 (1 2 r)z n
B . (2.2)

Note that the coefficients of z n
B21 and z n

B on the right-hand side
of (2.2) are chosen to ensure that z 5 const satisfies (2.2) and
that (2.2) is consistent with (1.3) to first order in Dt and Dx.
The Orlanski method now estimates r by utilising (2.2) at points
near the boundary. There are three possibilities; either r is
estimated from (2.2) by stepping back in both time and space
(i.e., n 1 1, B R n, B 2 1), which is using box C, or by

FIG. 2. Grid structure near the boundary. stepping back only in space (i.e., n 1 1, B R n 1 1, B 2 1),
which is using box B, or by stepping back only in time (i.e.,
n 1 1, B R n, B), which is using box D. This approach to the
Orlanski method is similar to that used by Miller and Thorpe [4].[15]), which is based on an Arakawa B-grid. It is not our
Following the notation of Chapman [1], these can be denoted aspurpose here to discuss the merits or otherwise of this particular
either ORE, ORE9 (explicit Orlanski condition) or ORI (implicitnumerical scheme, since our focus is on the radiation boundary
Orlanski condition). Thus we getcondition. However, for comparison, some calculations with a

numerical scheme similar to that used by Fandry [9], which is
based on an Arakawa C-grid, were also carried out with general
results similar to those reported here.

r 5 5
r̂ if 0 , r̂ , 1,

0, if r̂ # 0,

1, if r̂ $ 1,

(2.3)In Section 2 we describe the Orlanski radiation boundary
conditions and our new modifications. Then in Section 3 we
present our numerical tests of these conditions. In Section 4
we summarize our results. where the intermediate value r̂ is given by either

ORE: r̂ 5
z n

B21 2 z n21
B21

z n21
B22 2 z n21

B21
(2.4a)2. RADIATION BOUNDARY CONDITIONS

In this section, various numerical implementations of the
ORI: r̂ 5

z n11
B21 2 z n

B21

z n
B22 2 z n

B21
(2.4b)radiation boundary condition (1.3) are described. It is sufficient

to discuss just x 5 L. Let z n
i denote the value of z at x 5 xi ,

y 5 yj , t 5 tn , where xi , yj , tn are the discretized values of x, ORE9: r̂ 5
z n

B 2 z n21
B

z n21
B21 2 z n21

B
(2.4c)

y, t, respectively. Then the aim of a discretized version of the
radiation boundary condition is to obtain z n11

B from the values
Note that since there is no a priori guarantee that r̂ as determinedof z at times tn , tn21 , ... and the nearby boundary points xB ,
by (2.4a), (2.4b), or (2.4c) will satisfy the stability conditionxB21 , .... Here xB denotes the boundary x 5 L, xB21 is the grid
(2.1), it is necessary to include the limiting condition 0, 1 forpoint just inside the boundary, and so on (see Fig. 2). Note
r in (2.3) (see Orlanski [3]).that in implementing the radiation boundary condition (1.3)

Next an improved modification of the Orlanski boundarywe temporarily suppress the dependence on yj , since (1.3) is
condition is one in which z n11

B is linearly dependent on z n
B ,effectively a condition in x, t only.

z n
B21 , and z n11

B21 (i.e., all points in box A). With three interpolationFirst we describe the Orlanski method. Rather than discretize
points for z n11

B it is now possible to improve the accuracy of(1.3) directly, instead, (1.3) is interpreted as a statement that
the interpolation with respect to Dt, Dx, as well as consistencyz n11

B is determined by a wave which propagates with a positive
with (1.3). This aspect is explored later in this section. Thespeed c in the x-direction. This speed c is not necessarily known
simplest method of deriving the required relation is to note thata priori, but should satisfy the Courant–Friedrich–Lewy stabil-
(1.3) implies that near the boundary z depends only on (x 2ity condition
ct) and then to require that the linear relation between z n11

B and
the interpolating points should be satisfied by an arbitrary qua-

0 , r 5
c Dt
Dx

, 1, (2.1) dratic function of (x 2 ct). The result is

z n11
B 5 z n

B21 1 s(z n
B 2 z n11

B21), (2.5a)where Dt 5 tn11 2 tn and Dx 5 xi 2 xi21 , here assumed to be
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where Again the limiting conditions 21, 1 for ŝ9 correspond to the
limiting condition 0, 1 for r in (2.3).

Next we estimate the respective errors in these various imple-
s 5

1 2 r
1 1 r

. (2.5b) mentations of the Orlanski radiation boundary condition. Using
a Taylor series expansion for z n

B21 and z n
B about the point

z n11
B we obtain

Note that r is not needed directly here and that it is sufficient
to work with s. The intermediate value ŝ of s is now estimated

z n
B21 5 z n11

B 2 Dt zt 2 Dx zx 1 !s(Dt)2zttdirectly from (2.5a) and corresponds respectively to either an
explicit or an implicit radiation boundary condition, using either 1 Dx Dt zxt 1 !s(Dx)2zxx 1 ? ? ?, (2.11)
the points in box C or box B. The result is denoted by either

z n
B 5 z n11

B 2 Dt zt 1 !s(Dt)2ztt 1 ? ? ?. (2.12)SRE or SRI,

From the above formulas, we get
SRE: ŝ 5

z n
B21 2 z n21

B22

z n21
B21 2 z n

B22
(2.6a)

z n11
B 5 rz n

B21 1 (1 2 r)z n
B 1 « (2.13)

SRI: ŝ 5
z n11

B21 2 z n
B22

z n
B21 2 z n11

B22
. (2.6b)

where

« 5 Dt zt 1 r Dx zx 2 !s(Dt)2ztt 2 r Dx Dt zxt 2 !sr(Dx)2zxx 1 ? ? ?.Then the value of s in (2.5a) is given by

Here « is the error in the Orlanski interpolation (2.2), and at
this stage we have not explicitly used the radiation boundary

s 5 5
ŝ, if 0 , ŝ , 1,

1, if uŝu $ 1,

0, if 21 , ŝ # 0.

(2.7) condition (1.3). But if we now assume that zt 1 czx 5 0 (and
then also ztt 1 czxt 5 0) is satisfied on the boundary x 5 B,
then the above expression for « becomes

Here the limiting conditions 1, 0 for s correspond to the limiting « 5 !s(Dt)2ztt 2 !sr(Dx)2zxx 1 ? ? ?. (2.14)
conditions 0, 1 for r in (2.3).

An alternative modification allows z n11
B to be linearly depen- This shows that Orlanski radiation boundary condition (2.2)

dent on z n
B , z n

B21 , and z n21
B21 (i.e., all points in box D). Proceeding has first-order accuracy when r is assumed known and equal

as above, we get a modified Orlanski boundary condition con- to cDt/Dx and the open boundary condition zt 1 c zx 5 0 is
sistent with (1.3), provided that satisfied. That is, the error « is second-order in Dx, Dt.

Similarly, for our modifications of the Orlanski boundary
z n11

B 5 z n21
B21 1 s9(z n

B21 2 z n
B), (2.8a) condition (2.5) we have

where z n11
B 5 z n

B21 1 s(z n
B 1 z n11

B21) 1 «, (2.15)

s9 5 2r 2 1. (2.8b) where

Here, to estimate s9 an implicit scheme is given by « 5 !s(1 1 s)(Dt)2ztt 1 !s(1 2 s)(Dx)2zxx 1 Dx Dtzxt 1 ? ? ?

(2.16)

ŝ9 5
z n11

B21 2 z n21
B22

z n
B22 2 z n

B21
, (2.9)

or

where now the points are in both boxes B and C. Then the
« 5 2

1
2

(1 1 s)2

(1 2 s)
(Dt)2ztt 1

1
2

(1 2 s)(Dx)2zxx 1 ? ? ?value of s9 in (2.8a) is given by

and

s9 5 5
ŝ9, if uŝ9u , 1,

1, if ŝ9 # 21,

21, if ŝ $ 1.

(2.10)
s 5

1 2 r
1 1 r

.
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a b

FIG. 3. (a) Dispersion relation for the tanh profile (3.6a) with s . 0, where r 5 kL/f. The solid line is the Kelvin wave, above it are the edge waves
and below are the shelf waves. Note that r is the ‘‘number’’ of waves in a domain of length 2L. (b) As above but only for shelf waves. The solid line is the
first mode shelf wave, and below are the second mode etc. Here s is measured in units of 1026 s21.

Further, for the modification (2.8) we obtain lengths dominate, the solution for each wave mode approxi-
mates the form z P z(x 2 ct). Further, for the typical waves
generated in storm surge simulations we can expect long wave-z n11

B 5 z n21
B21 1 s9(z n

B21 2 z n
B) 1 «, (2.17)

lengths to dominate.
Importantly this error analysis is independent of how r, s,where

and s9 are determined. This is significant since r, s, and s9 are
given by ratios of small quantities and, hence, can be expected« 5 22(Dt)2ztt 2 !s(1 1 s9)(Dx)2zxx 2 (2 1 s9) Dx Dtzxt 1 ? ? ?.
to be rather noisy. Indeed, our numerical evaluation of these
quantities show this. Hence the modified boundary conditionsor
(i.e., SRE etc.) should provide better results than the Orlanski
boundary conditions (i.e., ORE etc.). This point distinguishes

« 5
2

1 1 s9
(Dt)2ztt 2

1
2

(1 1 s9)(Dx)2zxx 1 ? ? ? our approach to the error analysis from that of Miller and
Thorpe [4]. They did not assume that zt 1 czx 5 0 was satisfied
on x 5 B, but instead they inserted the approximate formulasand
(2.4) for r̂ (or (2.6) for ŝ, or (2.9) for ŝ9) in «. Thus, for the
Orlanski boundary condition they gets9 5 2r 2 1.

« 5 (Dt)2ztt 1 Dx Dt zxt 1 r̂ Dx Dt zxt 1 r̂(Dx)2zxx , (2.18)Note that in all cases the error « is second-order in Dx, Dt,
independent of how r or s or s9 are determined. But, if we also

which is second-order. To obtain this result we use a Tay-assume that near the open boundary z P z(x 2 ct) (i.e., zt 1
lor series expansion for z n21

B21 and z n21
B22 about the point z n11

B toczx 5 0 not only holds on x 5 B but also in the vicinity of
obtainx 5 B), then the Orlanski boundary conditions remain only

first-order accurate, but the modified boundary conditions (2.5)
z n21

B21 5 z n11
B 2 2 Dt zt 2 Dx zx 1 2(Dt)2zttand (2.8) become second-order accurate (i.e., « is third-order

in Dx, Dt). Thus the modified radiation boundary conditions 1 2 Dx Dt zxt 1 !s(Dx)2zxx 1 ? ? ?,
(2.5) and (2.8) are an improvement on the Orlanski boundary

z n21
B22 5 z n11

B 2 2 Dt zt 2 2 Dx zx 1 2(Dt)2zttcondition (2.2) and have higher order accuracy, but provided
z P z(x 2 ct). Although this is generally not the case, since 1 4 Dx Dt zxt 1 2(Dx)2zxx 1 ? ? ?.
analysis of the linearized version of the shallow water equations
would show that the waves approaching the boundary are dis- Then using these and (2.11) for z n

B21 in (2.4a) (i.e., ORE) for
r̂, we obtainpersing wave packets, it can be expected that when long wave-
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FIG. 4. Contour plots of z for the pressure initial condition (3.2) with depth profile (3.6a) and parameters f 5 0, R0 5 75 km, for the radiation boundary
condition SRE.

3. NUMERICAL TESTS
r̂ 5 2

Dt zt

Dx zx
1 ? ? ?,

Since the aim here is to test the validity of radiation boundary
conditions designed to allow waves to cross the open boundary

or
without reflection or distortion, we generate waves either
through an initial-value problem with a localized initial condi-

2r̂ Dx zx 5 Dt zt 2 #s(Dt)2ztt 2 Dx Dt zxt 2 2r̂ Dx Dt zxt tion given by

2 #sr̂(Dx)2zxx .

z 5 z0(x, y), u 5 u0(x, y), v 5 v0(x, y) at t 5 0, (3.1)
Substituting this expression into (2.14) then gets the error «

expressed as (2.18) above. If we now assume also that z P
where the functions z0 , u0 , v0 are effectively nonzero only inz(x 2 ct) then the error « in (2.14) or (2.18) becomes third
the middle part of the domain, or with localized wind stressorder. A similar analysis can be carried out for ORI, ORE9,
forcing t (x,y)

W which are likewise effectively nonzero only in theSRE, SRI, and SRI9, and in each case « is second order, but
middle of the domain.it becomes third order when z P z(x 2 ct) is assumed. Curi-

For the results shown here, we either used an initial conditionously, « is identically zero at second order for ORE9 as noted
by Miller and Thorpe [4]. But we emphasize again that this
error analysis uses the interpolation formulas for r̂ (2.4a) etc.,

z0 5 zm exp S2
x2

R 2
0
2

(y 1 y0)2

R 2
0

D, u0 5 v0 5 0, (3.2)whereas our error analysis is independent of how r etc. are
evaluated. Our numerical results show that the interpolation
formula (2.4a) for r̂ etc. is very noisy and, hence, we expect our
error analysis to be more robust. Further, the implementation of corresponding to an input of potential energy, or
the formula assumes that r̂ is given by (2.4a) only when 0 ,
r̂ , 1 (see (2.7)), whereas the above error analysis assumes
(2.4a) holds for all r̂. z0 5 0, u0 5 c0y/h, v0 5 2c0x/h, (3.3)
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a localized eddy with maximum radial velocity Vm 5 0.86cm/
h0R0 , effective radius R0 , and centred at x 5 0, y 5 2y0 , where
h0 5 h(2y0). Also, the waves generated by an atmospheric
wind stress are considered, where we either use a travelling
longshore wind stress,

t (x)
W 5 tm exp S2

(x 2 x1 2 Vt)2

R 2
0

2
(y 1 y0)2

R 2
0

D,

(3.4)
t (y)

W 5 0,

or a tropical cyclone model (for f , 0),

t (x)
W 5 tm exp S2

(x 2 x1 2 Vt)2

R 2
0

2
(y 1 y0)2

R 2
0

D (y 1 y0)

R0
, (3.5a)

t (y)
W 5 2tm exp S2

(x 2 x1 2 Vt)2

R 2
0

2
(y 1 y0)2

R 2
0

D (x 2 x1 2 Vt)
R0

,

(3.5b)

while z0 , u0 , v0 are set to zero. These both represent a localized
wind stress of maximum strength tm for (3.4), and tm(2e)21/2 for
(3.5), and an effective radius R0 , propagating in the alongshore
direction with a speed V from the location x 5 2x1 , y 5 2y0

to x 5 x0 , y 5 2y0 , in a time T 5 (x0 2 x1)/V, while tm is
expressed as tm 5 t0 f (t). Here f (t) is a smooth function, increas-
ing from zero to unity over a time interval t1 , remaining constant
at unity for a time T 2 (t1 1 t2) and then decreasing to zero
in a time interval t2 . The purpose here is to avoid too much
oscillatory behaviour if the wind stress is turned on or off too
quickly. Note that for the tropical cyclone model (3.5a), (3.5b)
the magnitude of the wind stress is zero at the centre, increases
to a maximum at a radius of R0221/2, and then falls off to zero.

In all cases, the disturbance generated outside of the forcing
region consists of a set of dispersing coastally trapped wave
packets propagating parallel to the coast which eventually reach
the open boundaries x 5 L and 2L of the computational domain.
Of course, in a realistic storm surge simulation, the wave field
generated will be more complicated than that due to the ideal-FIG. 5. As for Fig. 4, but the plots of energy flux F for (3.7) and energy

E for (3.8), the solid line is the result from the doubling the domain, while ized generation mechanisms described here, but it is instructive
the dashed line is the result from the original domain. to test the radiation boundary conditions in relatively simple sit-

uations.
The depth profile h(y) is given by either

where

h(y) 5 h0 2 Dh tanh F b
W

(y 1 y0)G, (3.6a)

c0 5 cm exp S2
x2

R 2
0
2

(y 1 y0)2

R 2
0

D,

or

corresponding to an input of kinetic energy. In both these cases
h(y) 5 hm 1 (hM 2 hm)uy/W u. (3.6b)t (x,y)

W are set to zero. The initial condition (3.2) corresponds to
a localized pressure disturbance of elevation zm , effective radius
R0 , and centred at x 5 0, y 5 2y0 , while (3.3) corresponds to Here, in (1.10b) hM and hm are the maximum and minimum
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FIG. 7. As for Fig. 5, but for the radiation boundary condition (3.12).FIG. 6. As for Fig. 5, but the plot of energy flux F and energy E, for the
radiation boundary condition ORE9 from the original domain.

hr, t2 5 3 h and set x1 5 2180 km, x0 5 180 km with R0 5depths at y 5 2W and y 5 0, respectively. For (3.6a) note that
75 or 100 km.for y0 5 !s and for b . 5 we can effectively put hM 5 h0 1 Dh

To test the radiation boundary conditions the energy flux atand hm 5 h0 2 Dh. In general, the parameter b is a measure
the open boundary, x 5 L, and the energy in the computationalof the topographic slope.
domain are computed. These are defined bySince the parameter space is quite large and limitations allow

us to show only some selected representative results, we usually
set L 5 600 km, W 5 400 km, y0 5 !sW, hM 5 400 m, hm 5

F 5 E0

2W
Hu Sgz 1

1
2

u2 1
1
2

v2D dy at x 5 L. (3.7)
20 m, and the slope parameter b 5 5.5 in (3.6a). For the initial
conditions (3.2) and (3.3) we typically set R0 5 50 or 75 km,
zm 5 100 cm, and Vm 5 25 cm/s, while in (3.4) and (3.5) we E 5 EL

2L
E0

2W
S1

2
H(u2 1 v2) 1

1
2

gz 2D dy dx. (3.8)
set tm 5 100 or 300 cm2/s2, V 5 20 km/hr, T 5 18 h, t1 5 3
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FIG. 8. Contour plots of z for the eddy initial condition (3.2) with depth profile (3.6a) and parameters f 5 21024, R0 5 75 km, for the radiation boundary
condition SRE.

In practice F is computed at a point just inside the boundary propagate in both directions, the wave in the positive (negative)
x-direction for f negative (positive) being trapped at the coastx 5 L to avoid local errors associated with the open boundary

condition. In the absence of any wind stress or atmospheric y 5 0, with this situation being reversed for the wave trapped
at y 5 2W.pressure forcing and in the absence of friction, the time rate

of change of E should be balanced by F, together with the First we tested the radiation boundary conditions with exact
coastally trapped wave solutions. These satisfy the linearized,corresponding energy fluxes at the other open boundaries. Then

we double the computational domain in the alongshore direction unforced version of the shallow water equations (1.1), and are
given by(i.e., uxu , 2L, 0 , y , 2W ) and we compare with the

corresponding solutions in the same main domain, uxu , L,
0 , y , 2W. In particular, we compare F and E. (z, u, v) 5 Reh(f(y), u(y), 2iv(y)) exp(2ist 1 ikx)j, (3.9)

Based on analysis of the linearized version of the shallow
water equations (1.1), we expect the problems defined above

where k is the alongshore wavenumber (assumed positive) andto lead to the generation of surface gravity wave transients and
s is the wave frequency. Here the modal function f(y) satisfiescoastally trapped waves. These latter take the form of dispersive
the equationwave packets propagating in the alongshore direction with a

modal structure in the offshore direction. They consist of high-
frequency edge waves propagating in both directions and, when

(ghfy)y 1 Ss 2 2 f 2 2 ghk2 1
gfk
s

hyD f 5 0 in 0 . y . 2W,the Coriolis parameter f 5/ 0, lower-frequency Kelvin waves and
shelf waves propagating in the positive (negative) x-directions (3.10a)
when f is negative (positive). Since the main purpose is to
test the effectiveness of the radiation boundary conditions in

andallowing these coastally trapped waves to propagate out of the
domain, we have concentrated here on the boundaries at
x 5 6L and note that the boundary at y 5 2W is a rigid u(y) 5

g
s 2 2 f 2 (skf 1 ffy), (3.10b)

boundary. This has the consequence that Kelvin waves can
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s, with parameter k and corresponding eigenfunction f(y), but
we note that s occurs nonlinearly in (3.9). A typical set of
dispersion curves are shown in Fig. 3 for the ‘‘tanh’’ depth
profile (3.6a) with f 5 21024 s21. Here we show only the waves
propagating in the positive x-direction. There is an infinite set
of edge waves where us u . u f u, a Kelvin wave, and an infinite
set of shelf waves with us u , u f u. In the negative x-direction
there is an infinite set of edge waves and a Kelvin wave, both
being similar to their counterparts in the positive x-direction.
But note that the Kelvin wave propagating in the positive (nega-
tive) x-direction is trapped at the boundary y 5 0 (2W ), respec-
tively, when f , 0, the situation being reversed for f . 0.
The radiation boundary conditions were then tested using the
linearized, unforced version of the shallow water equations
(1.1) and using (3.9) with t 5 0 as an initial condition. To
avoid complications from the bottom boundary x 5 2L, we
multiplied these analytical solutions by an envelope function
F (x), which is a smooth function effectively equal to 1 for
x . 0 and 0 for x , 2L. Tests with these one-sided wave
packets for a range of wavenumbers k showed that all the
radiation boundary conditions allowed the wave to pass through
the open boundary with no detectable change in speed or shape,
at least until the rear of the wave packet reached x 5 L.

Next we turn to our numerical results using the more general
initial conditions (3.2), or (3.3). Figure 4 shows the results with
f 5 0, for the pressure initial condition (3.2) with the ‘‘tanh’’
depth profile (3.6a). The parameter setting is L 5 600 km, W 5
400 km, y0 5 !sW, hM 5 400 m, hm 5 20 m, b 5 5.5, and R0

5 75 km, zm 5 100 cm. Similar results are obtained with f 5
21024 s21, but they will not be shown here (see Tang [15]).
The figure shows the contour plots of surface elevation z, and
it clearly shows the development of edge waves propagating
in both alongshore directions. The corresponding plots for u
and v show a similar situation (see Tang [15]). This result is
for the SRE radiation boundary condition. The corresponding
energy flux F (3.7) and energy E (3.8) are shown in Fig. 5 (in
fact we plot F/Dy and E/Dx Dy). From the figure for F we
identify a burst of surface gravity wave transients reaching x 5
L at about 2–3 h, followed by edge waves at about 7–8 h. The
corresponding decreases in energy E are well correlated withFIG. 9. As for Fig. 8, but the plots of energy flux F for (3.7) and energy
these energetic bursts of wave activity. In this case, there is noE for (3.8). The solid line is the result from doubling the domain, while the

dashed line is the result from the original domain. evidence of wave reflection from the boundaries x 5 6L for
the modified radiation boundary conditions SRE, SRI, SRI9
and the Orlanski boundary conditions ORE, ORI, while the
second-order radiation boundary conditions are found to per-
form a bit better than the first-order boundary conditions, mainlyv(y) 5

g
s 2 2 f 2 (skfy 1 fkf). (3.10c)

with respect to the passage of the small-amplitude trailing oscil-
lations (see Fig. 5 for times greater than 10 h). Further, the

The boundary condition (1.2) becomes corresponding results from doubling the computational domain
are again almost identical (see Fig. 5 for the SRE result).
However, when the same problem is considered for ORE9, Fig.h Sfy 1

fk
s

fD5 0 at y 5 0, 2W. (3.11)
6 shows that this boundary condition cannot cope with any kind
of wave propagating to the boundary, since strong reflection
happens as soon as waves approach the boundary. The reasonEquations (3.10a) and (3.11) define an eigenvalue problem for
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FIG. 10. Contour plots of z for the wind stress forcing (3.4) with depth profile (3.6a) and parameters f 5 21024, R0 5 100 km, t1 5 3 h, and t2 5 6 h
for the radiation boundary condition SRE.

for this is because ORE9 uses box D for the evaluation of r̂
(see Fig. 2), which can be regarded as using adjacent boundary
values rather than interior values.

Miller and Thorpe [4] pointed out that a linear combination
of the three first-order boundary conditions in Section 2,

r̂ 5 r̂(ORE9) 1 r̂(ORI) 2 r̂(ORE), (3.12)

will give a higher order accuracy. This is technically correct,
but it does not lead to a better practical result. We tested this
radiation boundary condition as well. The results clearly show
in Fig. 7 that, after the gravity waves reach the boundary, strong
reflection occurs. The reason for this is the inadequacy of ORE9,
discussed above.

Next, we show the results for f 5 21024 s21 for the eddy
initial condition (3.3) and the bottom profile (3.6a). The parame-
ter setting again is L 5 600 km, W 5 400 km, y0 5 !sW, hM 5
400 m, hm 5 20 m, b 5 5.5, and R0 5 75 km, cm 5 4.5 3
1012 cm3/s. Figure 8 shows contour plots of pressure z, and in
Fig. 9 we plot the energy flux F and energy E. These results
are again for the SRE radiation boundary condition. The surface
gravity wave transients are now negligible, while the edge FIG. 11. As for Fig. 10, but the plots of energy flux F. The solid line is
waves are discernible but not quite as significant as the Kelvin the result from the doubling the domain, while the dashed line is the result

from the original domain.wave which reaches x 5 L at about 4 h, followed by the shelf
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FIG. 12. As for Fig. 11 the plot of energy flux F, but for radiation boundary conditions SRI (a), SRI9 (b), ORE (c), and ORI (d) from the original domain.

waves which now carry most of the energy flux. When we conditions ORE and ORI give even worse results. The reason
for this is because the second mode shelf wave now is muchconsider the corresponding results obtained from doubling the

domain, we find that in this case the radiation boundary condi- stronger than the first mode. Further details can be found in
Tang [15].tions SRE, SRI, and SRI9 give comparable and reasonably good

results, although again with a marginal bias in favour of SRE. Now we show the results for wind stress forcing (3.4) for
the bottom profile (3.6a). Again we use the same parametersThe most serious degradation in performance occurs when a

second mode shelf wave arrives at the boundary. The Orlanski as above but we set R0 5 100 km, tm 5 100 cm2/s2, V 5 20
km/h, T 5 18 h, t1 5 3 h, t2 5 6 h, and x1 5 2180 km, x0 5boundary conditions ORE and ORI do not perform as well as

the modified boundary conditions, particularly for the shelf 180 km. Figure 10 shows the contour plots of pressure z; in
Fig. 11 we show the corresponding results for energy flux Fwaves. We also tested the radiation boundary condition ORE9

and Miller and Thorpe’s boundary condition (2.31), but again for the SRE radiation boundary condition; and Fig. 12 shows
the corresponding results for the radiation boundary conditionswe found that they give very poor results. If we reduce R0 from

75 km to 50 km, we find basically similar conclusions, although SRI, SRI9, ORE, and ORI. The energy flux peak at about t 5
12 h is best interpreted as a mixture of an edge wave and ain this case there is a degradation in the performance of all

the radiation boundary conditions, and the Orlanski boundary Kelvin wave, and this is followed by substantial shelf waves. In
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FIG. 13. Contour plots of z for the tropical cyclone model (3.5a), (3.5b) with depth profile (3.6a) and parameters f 5 21024, R0 5 100 km, t1 5 3 h, and
t2 5 3 h for the radiation boundary condition SRE.

this case, all the radiation boundary conditions give comparable reaches the boundary. For more details on this case see Tang
[15].results with the doubled domain before the second mode shelf

wave arrives at the boundary, except SRI, and none of the From the above discussion we can draw the simple conclu-
sion that the modified radiation boundary conditions SRE, SRI,radiation boundary conditions deal very satisfactorily with the

second mode shelf wave; but again SRE performs the best. and SRI9 perform better than Orlanski radiation boundary con-
ditions ORE, ORI, and we marginally favour SRE. All theWhen t2 5 6 h, that is, when we turn off the wind stress forcing

more smoothly, we get more coherent waves, rather than the radiation boundary conditions have difficulty dealing with the
shelf waves, especially the second mode shelf wave, possiblymore oscillatory waves due to the sudden turning off of the

wind stress forcing. Consequently the results for t2 5 6 h agree because it tends to be more dispersive.
Further, comparing the radiation boundary condition ORE9better with the doubled domain results (see Tang [15]).

Finally we turn to the results for the tropical cyclone model and (3.12) with the other five radiation boundary conditions,
we find that ORE9 and (3.12) are not satisfactory and generally(3.5a), (3.5b), again using the bottom profile (3.6a), with the

same domain parameters as before, while the parameters for give poor results.
In addition, we tested the radiation boundary conditions forthe wind stress forcing are R0 5 100 km, tm 5 300 cm2/s2, V 5

20 km/h, T 5 18 h, t1 5 3 h, t2 5 3 h, and x1 5 2180 km, the linear bottom profile (1.10b) with the other parameter set-
tings the same as before. Here for this slope we put hm 5 2x0 5 180 km. Figure 13 shows the contour plots of pressure

z, and in Fig. 14 we show the corresponding results for energy cm and hM 5 400 m. In general we find the same conclusions
as above, although the results are different in detail (see Tangflux F and energy E, again for the SRE radiation boundary

condition. This wind stress forcing models a tropical cyclone [15] for details).
We also tested the radiation boundary conditions with in-and we find that it mainly generates shelf waves. Again the

radiation boundary conditions SRE performs best, although creased amplitudes for the initial conditions and forcing terms
in order to test the role of the nonlinear terms. For the pressurenow SRI is quite similar (see Fig. 14) while the Orlanski radia-

tion boundary conditions ORE, ORI again cannot cope with initial condition (3.2) with the ‘‘tanh’’ bottom profile (3.6a), if
we use the same parameter settings as before, we get almostthe second mode shelf wave, giving strong reflection after it
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same as before. Compared with the case tm 5 100 cm2/s2 shown
in Figs. 10 and 11 we found similar results, but as we increase
the forcing, more energy is transferred to the second peak,
which corresponds to the shelf wave, and there is less oscillation
after this peak. The radiation boundary condition (SRE here) per-
forms just as well when the forcing amplitude is increased. For
the tropical cyclone model the results for changing the forcing
amplitude are similar and discussed in detail in Tang [15].

4. SUMMARY

In this paper we have examined three versions (2.4a)–(2.4c)
of the Orlanski radiation boundary conditions, as well as three
new modifications (2.6a), (2.6b), (2.9). These have been tested
in the context of the shallow water equations in configurations
related to storm surge simulations. Thus we have concentrated
on the ability of the radiation boundary conditions to transmit
coastally trapped waves. Importantly, we have used either local-
ized initial conditions or forcing mechanisms, which remain
localized within the interior of the computational domain, in
order to focus on the transmission of freely propagating waves.
Thus we do not here consider the issue of the transmission of
forced waves. Also, here we do not consider the issue of oblique
waves, since the variable bottom topography in the cross-shelf
direction has the effect of guiding the waves in the along-
shore direction.

Of the six radiation boundary conditions tested, only ORE9
(and (3.12)) was totally unsatisfactory. Of the remaining condi-
tions we find that the modified radiation boundary conditions
SRE, SRI, and SRI9 perform better than the Orlanski radiation
boundary conditions ORE, ORI. Further, overall, SRE gave
marginally the best performance. But all the conditions have
difficulties with the shelf waves, particularly for the more dis-
persive second mode. Indeed, we can infer from our results
that the more the waves have the structure of dispersive wave
packets, the poorer the performance of all the radiation bound-
ary conditions. But, that having been admitted, our results show
that at least for the time span considered here (up to three days)
either of the two modified radiation boundary conditions SRE,

FIG. 14. As for Fig. 13 but the plots of energy flux F for (3.7) and energy SRI can be confidently used in storm surge simulations.
E for (3.8). The solid line is the result from the doubling the domain, while The numerical model used here is a two-dimensional, or
the dashed line is the result from the original domain. depth-integrated, storm surge model. But we would not antici-

pate any major difficulty in incorporating the radiation boundary
conditions tested here into three-dimensional models, provided

identical results to the linear problem (i.e., Eqs. (1.1a)–(1.1c) that the fluid is assumed homogeneous and the nomenclature
with the nonlinear terms omitted). We then increased zm to 10 three-dimensional refers to the allowance for vertical shear in
m, which is very large and may be unrealistic, but we still the horizontal currents due to parameterised eddy viscosities.
obtained essentially the same results. However, the development of radiation boundary conditions

For the eddy initial condition (3.3), we find that increasing analogous to those considered here for density-stratified storm
the initial amplitude of the eddy results in more nonlinear surge models remains a topic for future investigation.
behaviour for the eddy itself, but less wave activity. This aspect
we have discussed elsewhere (Grimshaw et al. [16, 17]). ACKNOWLEDGMENTS
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