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Using a barotropic coastal ocean numerical model, several radia-
tion boundary conditions at the open boundaries of the computa-
tional domain are examined. The focus is on how well they can
transmit coastally trapped waves. As well as radiation boundary
conditions of the Orlanski type, three new modifications are intro-
duced and found to give a better performance. © 1996 Academic

Press, Inc.

1. INTRODUCTION

In the numerical simulation of coastal ocean circulation open
boundary conditionsinevitably occur and they can play acrucia
role in determining the validity of the results. Ideally numerical
open boundary conditions should allow fluid motions generated
in the computational domain and which are felt at the open
boundary to pass through the boundary without influencing
the interior solution. This is a long-standing and well-known
problem and, since the advent of numerical ocean models, there
have been several solutions proposed. Similar problems arise
in limited-area atmospheric models and in other fluid dynamic
flows. However, none of the various open boundary condi-
tions in common use appear to be universally and ideally satis-
factory (e.g., Chapman [1] and Rded and Cooper [2]). In gen-
eral, while some open boundary conditions are satisfactory in
a particular context they may prove unreliable in a different
context.

The main motivation of this study is to identify and test
radiation boundary conditions suitable for use in storm surge
numerical models. We consider the usual shallow water equa-
tions in a computational domain which contains a coastline
and, importantly, has bottom topography which varies in the
offshore direction and is uniform in the longshore direction.
This configuration alows for a full spectrum of coastaly
trapped waves propagating in the longshore direction, as well
as the usual gravity-wave transients. Our concern is to find
radiation boundary conditions which allow these waves to pass
through the boundary with the minimum of distortion and re-
flection. To focus on the performance of the radiation boundary
conditions we generate the waves by localized forcing mecha-
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nisms in the interior of the computational domain. The major
difficulties present in our configuration are that, first, two or
more wave modes may approach the boundary simultaneously
and, second, the waves generally have the form of dispersing
wave packets. Both these factors imply that the phase speed
of the waves is not necessarily known in advance, and hence
the radiation boundary conditions we consider are of the type
introduced by Orlanski [3] (see the discussion below follow-
ing (1.3)).

There have been several studies of radiation boundary condi-
tions of the Orlanski type. That which is closest to oursis due
to Chapman [1], who, for a computational domain similar to
ours, studied the merits of several open boundary conditions
including those of the Orlanski type. He considered three basic
experiments, using the linearized shallow water equations on
an f-plane. In the first, a localized sea surface elevation is
imposed initially and then relaxes by wave propagation. In the
other two experiments a uniform wind stress is imposed, either
in the longshore direction or in the cross-shelf direction. He
found that the Orlanski radiation boundary condition was gener-
aly superior to the alternatives considered. Prior to this, Miller
and Thorpe [4] modified the original Orlanski radiation bound-
ary condition, which was proposed for aleapfrog time-stepping
scheme, by implementing it instead in the context of upstream
differencing. Their procedure is similar to that which we shall
adopt in our discussion. They tested their implementation
against other variants for an evolving density current and found
their method gave some improvement. Camerlengo and
O'Brien [5] proposed a simplification of the Orlanski radiation
boundary condition appropriate for limited-region oceanic and
atmospheric models. They found their version satisfactory for
Kelvin waves, but it did not perform so well for Rossby waves.
These and other studies have been reviewed by Roed and Coo-
per [2]. They concludethat *‘ the response [in the computational
domain] is highly sensitive to the implemented open boundary
conditions,”” and emphasi ze the necessity to construct the radia-
tion boundary condition to fit the problem being considered.
They aso discuss radiation boundary conditions for forced
waves (see aso Roed and Smedstad [6]) and oblique waves,
aspects which we shall not pursue here.
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FIG. 1.

Next, we introduce the shallow water equations, which are,
in standard notation,

(X

U+ uu, + ou, — fo + g& = TFW (1.19)
)

v+ v, + ovy + fu+ gg, = WW’ (1.1b)

& + (Hu) + (Hv), = 0. (1.1¢)

Here H = h + £, (u, v) are the mean velocity components in
thealong-shelf (x) and cross-shelf (y) directions, fisthe Coriolis
parameter, g is the gravitational acceleration, { are the wind
stress components, h(y) is the undisturbed water depths, and
listhefree surface elevation. The equations are solved numeri-
caly in arectangular domain (see Figs. 1a, b). One boundary
(y = 0) isthe coastline, and the contoursfor the bottom topogra-
phy are paralel to this boundary, with the depth increasing
offshore. For simplicity, wealso placearigid boundary offshore
ay = —W. In general, this should be an open boundary, but
since most of the wave energy is in coastally trapped waves
which propagate in the alongshore direction, this simplification
isjustified here. The boundary conditions at these rigid bound-
aries are then
hv =0 ay=0—W. 1.2

In the longshore direction, £, u, v — 0 as|x| — o at any finite
time. But, in the computational domain, |x| = L we shall need
artificial boundary conditions at |x| = L. These will be intro-
duced below. The problem specification is completed by the
formulation of initial conditions, and by the specification of
the wind stress. This we shall do in Section 3.

On the open boundaries x = L and x = —L, we use the
conventional radiation boundary condition,

L+ci=0 ax=1L, —L. (1.3)

(a) Computational domain in x, y coordinates. (b) Depth profile.

Here c is the phase speed of awave approaching the boundary.
The crucia question here is the choice of the speed c. In early
numerical models ¢ was chosen according to the known wave
dynamics of the problem being considered. In the context of
the shallow water equations the traditional choice is ¢ =
V/gh, where h is the local water depth (e.g., Wurtele et al. [7],
Davies and Furnes [8], or Fandry [9]), which corresponds to
the assumption that the waves approaching the boundary are
surface gravity waves. However, in problems such as the pres-
ent, where h is a function of y with the consequence that, as
well as surface gravity waves, thereisafull spectrum of coast-
ally trapped waves, this choice is not appropriate. Instead we
follow Orlanski [3] and compute ¢ from values of ¢ near the
boundary. We consider three implementations of the Orlanski
radiation boundary conditions similar to those introduced by
Miller and Thorpe [4]. In addition we introduce three new
modifications of the Orlanski method.

Before proceeding to describe the numerical implementation
of (1.3), we should comment that (1.3) is itself an ad hoc
approximation, whose justification is based mainly on the ex-
pectation that waves approaching the boundary will be approxi-
mately linear, nondispersive and propagating normal to the
boundary. Attempts to construct exact radiation boundary con-
ditions, or rational approximations to an exact condition, have
been discussed by Engquist and Magda [10] and Keller and
Givali [11] for the two-dimensional wave equation, Hagstrom
and Hariharan [12] for the spherically symmetric gas dynamic
equations and Higdon [13] for elastic wave propagation. How-
ever, even the shallow-water equations (1.3) seem too complex
for this approach to be pursued here, and hence our strategy is
to regard (1.3) as the given radiation boundary condition and
then to examine its numerical implementation. But in doing so
we hasten to point out that our method of numerical implemen-
tation reveals that (1.3) can be regarded as an interpolation
formula (see Roed and Cooper [2]).

Intheinterior of the computational domain we use a numeri-
ca method developed by Tang et al. [14] (see aso Tang
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FIG. 2. Grid structure near the boundary.

[15]), which is based on an Arakawa B-grid. It is not our
purpose here to discuss the merits or otherwise of this particular
numerical scheme, since our focus is on the radiation boundary
condition. However, for comparison, some calculations with a
numerical scheme similar to that used by Fandry [9], which is
based on an Arakawa C-grid, were also carried out with general
results similar to those reported here.

In Section 2 we describe the Orlanski radiation boundary
conditions and our new modifications. Then in Section 3 we
present our numerical tests of these conditions. In Section 4
we summarize our results.

2. RADIATION BOUNDARY CONDITIONS

In this section, various numerical implementations of the
radiation boundary condition (1.3) are described. It is sufficient
to discuss just x = L. Let {! denote the value of ¢ at x = x;,
y =Yy, t =t, wherex, y, t, are the discretized values of X,
y, t, respectively. Then the aim of a discretized version of the
radiation boundary condition is to obtain 3! from the values
of ¢ a timest,, t,_1, ... and the nearby boundary points Xg,
Xg-1, -... Here xg denotes the boundary x = L, Xz, is the grid
point just inside the boundary, and so on (see Fig. 2). Note
that in implementing the radiation boundary condition (1.3)
we temporarily suppress the dependence on y;, since (1.3) is
effectively a condition in x, t only.

First we describe the Orlanski method. Rather than discretize
(1.3) directly, instead, (1.3) is interpreted as a statement that
{5t is determined by a wave which propagates with a positive
speed cinthe x-direction. This speed cisnot necessarily known
apriori, but should satisfy the Courant—Friedrich—L ewy stabil-
ity condition

O<r=C—At<1,

~ 2.1)

where At = t,,; — t, and AX = X, — X_;, here assumed to be

independent of n and i, respectively. Hence, to first order
ZB is expected to be linearly dependent on £3_; and 3 (i.e.,
al pointsin box A), so that

BI=r{3 .+ (1 —-r)d. (2.2)
Note that the coefficients of B, and £} on the right-hand side
of (2.2) are chosen to ensure that { = const satisfies (2.2) and
that (2.2) is consistent with (1.3) to first order in At and Ax.
The Orlanski method now estimatesr by utilising (2.2) at points
near the boundary. There are three possibilities; either r is
estimated from (2.2) by stepping back in both time and space
(e, n + 1, B— n, B — 1), which is using box C, or by
stepping back only in space (i.e,n+ 1, B—-n+ 1, B — 1),
which is using box B, or by stepping back only in time (i.e.,
n + 1, B— n, B), which is using box D. This approach to the
Orlanski method issimilar to that used by Miller and Thorpe[4].
Following the notation of Chapman [1], these can be denoted as
either ORE, ORE' (explicit Orlanski condition) or ORI (implicit
Orlanski condition). Thus we get

foifo<i<i,

r=1:0, ifft=0, (2.3
1, iff=1,
where the intermediate value T is given by either
L -
ORE: = {E:lz— gg:li (2.49)
4 g
ORI:f=—"—— 2.4b
{B2— (B (2:45)
Y T
ORE":f = (2.4¢)

Notethat sincethereisnoapriori guaranteethat f asdetermined
by (2.4a), (2.4b), or (2.4c) will satisfy the stability condition
(2.2), it is necessary to include the limiting condition O, 1 for
r in (2.3) (see Orlanski [3]).

Next an improved modification of the Orlanski boundary
condition is one in which ™! is linearly dependent on (g,
8 ., and 3% (i.e, dl pointsin box A). With threeinterpolation
points for /& it is now possible to improve the accuracy of
the interpolation with respect to At, Ax, as well as consistency
with (1.3). This aspect is explored later in this section. The
simplest method of deriving the required relation is to note that
(1.3) implies that near the boundary ¢ depends only on (X —
ct) and then to reguire that the linear relation between /&' and
the interpolating points should be satisfied by an arbitrary qua-
dratic function of (x — ct). The result is

B = {8+ s(¢B — {B4), (2.59)
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where

(2.5b)

Note that r is not needed directly here and that it is sufficient
to work with s. The intermediate value 5 of sis now estimated
directly from (2.5a) and corresponds respectively to either an
explicit or animplicit radiation boundary condition, using either
the points in box C or box B. The result is denoted by either
SRE or SR,

n-1
SRE: 8 g“—gzz (2.68)
81— 28

Then the value of sin (2.53) is given by

if0<s<1,
if 3 =1,

if —1<8=0.

§
s=11, (2.7
0

Herethelimiting conditions 1, O for s correspond to the limiting
conditions O, 1 for r in (2.3).

An dternative modification allows £3** to be linearly depen-
denton £, £8-1, and £§3 (i.e, al pointsin box D). Proceeding
as above, we get a modified Orlanski boundary condition con-
sistent with (1.3), provided that

Bt = {81+ S'(Ba — B), (2.89)
where
s =2r -1 (2.8b)
Here, to estimate s’ an implicit scheme is given by
ntl _ 7n-1
o1 G5 (2.9)

(82— Ba’

where now the points are in both boxes B and C. Then the
value of s’ in (2.8a) is given by

¥, if|§] <1,
g =11  ify=-1 (2.10)
~1, ifs=1.

Again the limiting conditions —1, 1 for &' correspond to the
limiting condition O, 1 for r in (2.3).

Next we estimate the respective errorsin these variousimple-
mentations of the Orlanski radiation boundary condition. Using
a Taylor series expansion for {3, and {§ about the point
81 we obtain

(B = {8 = At G — Ax G+ 3(AY)%,
+ AXAt & + 3(AX) 20 + - - -, (2.11)
(8= 87 — At g+ 5(At?G + (212
From the above formulas, we get
Br=r{i,+@Q—-r){+e (2.13)
where
e= At L+ r Ax G — (AL — r AXAt &y — 31 (AX)250 +

Here ¢ is the error in the Orlanski interpolation (2.2), and at
this stage we have not explicitly used the radiation boundary
condition (1.3). But if we now assume that ¢ + ¢ = 0 (and
then also ¢, + ¢ = 0) is satisfied on the boundary x = B,
then the above expression for & becomes
= 3(AG — 31 (AX)°Lo + (2.14)
This shows that Orlanski radiation boundary condition (2.2)
has first-order accuracy when r is assumed known and equal
to cAt/Ax and the open boundary condition ¢ + c ¢, = O is
satisfied. That is, the error ¢ is second-order in Ax, At.
Similarly, for our modifications of the Orlanski boundary
condition (2.5) we have
gt =

1+ S8+ (8 + &, (2.15)

where

e =3(1 + (AL + 3(1 — 9(AX)%Lw + AX AL, +

(2.16)
or

. 1@+ S)Z(At)zgn

e 51— 9Lt

and



100

. 0020 e T T T T T T T
.0018:
.0016
.0014:—‘
.0012:-"
.0010:.

sigma

.0008
.0008 |
.0004 |

.0002F .

2.5 3.0

FIG. 3.

3.5 4.0

TANG AND GRIMSHAW

sigma

(a) Dispersion relation for the tanh profile (3.6a) with o > 0, where r = kL/7. The solid line is the Kelvin wave, above it are the edge waves

and below are the shelf waves. Note that r is the ‘‘number’’ of waves in a domain of length 2L. (b) As above but only for shelf waves. The solid line is the
first mode shelf wave, and below are the second mode etc. Here o is measured in units of 107 s,

Further, for the modification (2.8) we abtain

n+l —

B B +s(Ba— 38 te, (2.17)
where
e = —2(A1)%; — (1 + S')(AX)?Lw — (2 + ') AX At + - - -

or

2
1+5¢

e =

(AL — %(1 + ) AX Lo+ - -

and
s =2r -1

Note that in all cases the error ¢ is second-order in Ax, At,
independent of how r or sor s’ are determined. But, if we also
assume that near the open boundary ¢ = {(x — ct) (i.e, & +
¢, = 0 not only holds on x = B but also in the vicinity of
X = B), then the Orlanski boundary conditions remain only
first-order accurate, but the modified boundary conditions (2.5)
and (2.8) become second-order accurate (i.e., ¢ is third-order
in Ax, At). Thus the modified radiation boundary conditions
(2.5) and (2.8) are an improvement on the Orlanski boundary
condition (2.2) and have higher order accuracy, but provided
{ = {(x — ct). Although this is generally not the case, since
analysisof the linearized version of the shallow water equations
would show that the waves approaching the boundary are dis-
persing wave packets, it can be expected that when long wave-

lengths dominate, the solution for each wave mode approxi-
mates the form ¢ = {(x — ct). Further, for the typical waves
generated in storm surge simulations we can expect long wave-
lengths to dominate.

Importantly this error analysis is independent of how r, s,
and s’ are determined. Thisis significant sincer, s, and s’ are
given by ratios of small quantities and, hence, can be expected
to be rather noisy. Indeed, our numerical evaluation of these
quantities show this. Hence the modified boundary conditions
(i.e., SRE etc.) should provide better results than the Orlanski
boundary conditions (i.e., ORE etc.). This point distinguishes
our approach to the error analysis from that of Miller and
Thorpe[4]. They did not assumethat ¢; + cZ, = 0 was satisfied
on x = B, but instead they inserted the approximate formulas
(2.4) for ¢ (or (2.6) for §, or (2.9) for §') in &. Thus, for the
Orlanski boundary condition they get

£ = (APl + AXAt Ze + P AXAL & + F(AX)L,  (2.18)

which is second-order. To obtain this result we use a Tay-
lor series expansion for (8- and £33 about the point /5™ to
obtain

JBE = {8 — 2At 4 — AX G+ 2(At)%
+ 2AXAt o + 3(AX) 2+ -,
LB — 2 At 4 — 2Ax G+ 2(At)%L,
+ 4 AXAt G + 2(AX) 0+ - - .

n-1 —
B-2 —

Then using these and (2.11) for {3, in (2.44) (i.e., ORE) for
f, we obtain



BAROTROPIC COASTAL OCEAN NUMERICAL MODELS

CI= 1.00E+01

Cl= 1.00E+01

2.000 HRS 4.000 HRS

CI= 5.00E+00 CI= 5.00E+00

12.000 HRS

10.000 HRS

101

Cl= 5. OOE+OO CI— 5. OOE+OO

6.000 HRS 8.000 HRS

CI— 4OOE+OO CI— 2 50E+OO

d bt pTaape a0t )

14.000 HRS 16.000 HRS

FIG. 4. Contour plots of ¢ for the pressure initial condition (3.2) with depth profile (3.6a) and parameters f = 0, R, = 75 km, for the radiation boundary

condition SRE.

. At g
~AX gx

or

—PAX G = At & — $(A) L —

- % ( )zgxx

Substituting this expression into (2.14) then gets the error ¢
expressed as (2.18) above. If we now assume also that { ~
{(x — ct) then the error ¢ in (2.14) or (2.18) becomes third
order. A similar analysis can be carried out for ORI, ORE’,
SRE, SRI, and SRI’, and in each case ¢ is second order, but
it becomes third order when ¢ = {(x — ct) is assumed. Curi-
oudly, ¢ isidentically zero at second order for ORE’ as noted
by Miller and Thorpe [4]. But we emphasize again that this
error analysis uses the interpolation formulas for £ (2.44) etc.,
whereas our error analysis is independent of how r etc. are
evaluated. Our numerical results show that the interpolation
formula (2.4a) for t efc. isvery noisy and, hence, we expect our
error analysisto be morerobust. Further, the implementation of
the formula assumes that t is given by (2.4a) only when 0 <
f < 1 (see (2.7)), whereas the above error analysis assumes
(2.44) holds for al .

3. NUMERICAL TESTS

Sincetheam hereisto test the validity of radiation boundary
conditions designed to allow waves to cross the open boundary
without reflection or distortion, we generate waves either
through an initial-value problem with alocalized initia condi-
tion given by

g = §O(Xv y)! u= UO(XI y)! v = UO(X1 y) att = Ov (31)

where the functions ¢;, Uy, v, are effectively nonzero only in
the middle part of the domain, or with localized wind stress
forcing 73" which are likewise effectively nonzero only in the
middle of the domain.

For the results shown here, we either used aninitial condition

X (y+Y)

gO gm eXp ( E(z) - R(Z) >, Uy = Uy = 0, (32)

corresponding to an input of potential energy, or

§0 = 0, U = (pgy/h, Ug = _wOX/hl (33)
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FIG. 5. Asfor Fig. 4, but the plots of energy flux F for (3.7) and energy
E for (3.8), the solid line is the result from the doubling the domain, while
the dashed line is the result from the original domain.

where

2 + 02
‘ﬂo:lﬂmeXp(_é—[z)_(ng)).

corresponding to an input of kinetic energy. In both these cases
(¥ are set to zero. The initial condition (3.2) corresponds to
alocalized pressure disturbance of elevation ¢, effectiveradius
Ry, and centred at x = 0,y = —Y,, while (3.3) corresponds to

TANG AND GRIMSHAW

alocalized eddy with maximum radial velocity V,, = 0.86¢s,/
hyRy, effectiveradius Ry, and centred at x = 0,y = —Y,, where
hy = h(—Y,). Also, the waves generated by an atmospheric
wind stress are considered, where we either use a travelling
longshore wind stress,

— _ 2 2
T\(/)\(/):TmeXp<_(X Xl Vt) _(y+y0)>'
R3 R3
(3.4)
T(WY) =0,
or atropica cyclone modd (for f < 0),
0 _ _(X_Xl_Vt)z_(y+yo)2 (y+Yo)
Tw Tm EXP ( R% R(Z) RD y (35a)

I e ) S O YO)2> (X —x — Wt)

SO exp( R? R Ro

(3.5b)

while &, Uy, v, are set to zero. These both represent alocalized
wind stress of maximum strength 7, for (3.4), and 7,,(2e)"¥2 for
(3.5), and an effective radius R, propagating in the alongshore
direction with a speed V from the location x = —x;, y = —VY,
tOX =X,y = —VYo inatimeT = (X — x)/V, while 7, is
expressed as 1, = 7 f(t). Heref(t) isasmooth function, increas-
ing from zero to unity over atimeinterval t;, remaining constant
at unity for atime T — (t; + t,) and then decreasing to zero
in a time interval t,. The purpose here is to avoid too much
oscillatory behaviour if the wind stress is turned on or off too
quickly. Note that for the tropical cyclone model (3.5a), (3.5b)
the magnitude of the wind stressis zero at the centre, increases
to amaximum at aradius of R,27*2, and then falls off to zero.

In all cases, the disturbance generated outside of the forcing
region consists of a set of dispersing coastally trapped wave
packets propagating parallel to the coast which eventually reach
the open boundariesx = L and —L of the computational domain.
Of course, in aredlistic storm surge simulation, the wave field
generated will be more complicated than that due to the ideal-
ized generation mechanisms described here, but it isinstructive
totest the radiation boundary conditionsin relatively simple sit-
uations.

The depth profile h(y) is given by either

h(y) = h, — Ahtanh [VBV(y + yo)], (3.63)

or

h(y) = b + (e — h)[y/W]. (3.6b)

Here, in (1.10b) hy and h,, are the maximum and minimum
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FIG. 6. Asfor Fig. 5, but the plot of energy flux F and energy E, for the
radiation boundary condition ORE’ from the original domain.

depthsaty = —Wand y = 0, respectively. For (3.6a) note that
for y, = % and for b > 5 we can effectively put hy = hy + Ah
and h,, = hy — Ah. In genera, the parameter b is a measure
of the topographic slope.

Since the parameter spaceisquite large and limitations allow
usto show only some sel ected representative results, we usually
set L = 600 km, W = 400 km, y, = 3W, hy = 400 m, h,, =
20 m, and the slope parameter b = 5.5 in (3.6a). For the initial
conditions (3.2) and (3.3) we typicaly set R, = 50 or 75 km,
{n = 100 cm, and V,, = 25 cm/s, while in (3.4) and (3.5) we
set 7, = 100 or 300 cm?/<, V = 20 km/hr, T= 18 h, t, = 3
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FIG. 7. Asfor Fig. 5, but for the radiation boundary condition (3.12).

hr,t, = 3 hand set x;, = —180 km, X, = 180 km with R, =
75 or 100 km.

To test the radiation boundary conditions the energy flux at
the open boundary, x = L, and the energy in the computational
domain are computed. These are defined by

0 1 1
F:fWHu<g§+§u2+§v2>dy ax=L (37

o T (o o) e @
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FIG. 8. Contour plots of ¢ for the eddy initial condition (3.2) with depth profile (3.6a) and parameters f = —104, R, = 75 km, for the radiation boundary

condition SRE.

In practice F is computed at a point just inside the boundary
x = L to avoid local errors associated with the open boundary
condition. In the absence of any wind stress or atmospheric
pressure forcing and in the absence of friction, the time rate
of change of E should be balanced by F, together with the
corresponding energy fluxes at the other open boundaries. Then
we doubl e the computational domainin theaongshoredirection
(i.e,
corresponding solutions in the same main domain, |x| < L,
0 <y < —W. In particular, we compare F and E.

Based on analysis of the linearized version of the shallow
water equations (1.1), we expect the problems defined above
to lead to the generation of surface gravity wave transients and
coastally trapped waves. Theselatter take theform of dispersive
wave packets propagating in the alongshore direction with a
modal structure in the offshore direction. They consist of high-
frequency edge waves propagating in both directions and, when
the Coriolis parameter f # 0, lower-frequency Kelvinwavesand
shelf waves propagating in the positive (negative) x-directions
when f is negative (positive). Since the main purpose is to
test the effectiveness of the radiation boundary conditions in
allowing these coastally trapped waves to propagate out of the
domain, we have concentrated here on the boundaries at
X = *L and note that the boundary at y = —W is a rigid
boundary. This has the consequence that Kelvin waves can

propagate in both directions, the wave in the positive (negative)
x-direction for f negative (positive) being trapped at the coast
y = 0, with this situation being reversed for the wave trapped
ay=-W.

First we tested the radiation boundary conditions with exact
coastally trapped wave solutions. These satisfy the linearized,
unforced version of the shallow water equations (1.1), and are
given by

(¢, u,v) = Re{((y), U(Y), —iv(y)) exp(—iot +ikq)}, (3.9)

where k is the alongshore wavenumber (assumed positive) and
oisthe wave frequency. Here the modal function ¢(y) satisfies
the equation

(ghd), + <02—f2— ghk? + =— gfk ) $=0 in0>y>-W,
(3.10a)

and

u(y) = 02% 72 (K¢ + fdy), (3.10b)
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9 (oky, + fkg).

O.Z_fZ

v(y) = (3.20c)

The boundary condition (1.2) becomes
fk
h ¢y+3¢> =0 ay=0—-W. (311

Equations (3.10a) and (3.11) define an eigenvalue problem for
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o, with parameter k and corresponding eigenfunction ¢(y), but
we note that o occurs nonlinearly in (3.9). A typical set of
dispersion curves are shown in Fig. 3 for the “tanh” depth
profile (3.6a) withf = —107*s™*. Here we show only the waves
propagating in the positive x-direction. There is an infinite set
of edge waves where |o| > |f|, aKelvin wave, and an infinite
set of shelf waves with || < |f|. In the negative x-direction
there is an infinite set of edge waves and a Kelvin wave, both
being similar to their counterparts in the positive x-direction.
But note that the Kelvin wave propagating in the positive (nega-
tive) x-direction istrapped at the boundary y = 0 (—W), respec-
tively, when f < 0, the situation being reversed for f > 0.
The radiation boundary conditions were then tested using the
linearized, unforced version of the shallow water equations
(1.1) and using (3.9) with t = 0 as an initial condition. To
avoid complications from the bottom boundary x = —L, we
multiplied these analytical solutions by an envelope function
F (x), which is a smooth function effectively equal to 1 for
x > 0 and O for x < —L. Tests with these one-sided wave
packets for a range of wavenumbers k showed that all the
radiation boundary conditions allowed the wave to passthrough
the open boundary with no detectable change in speed or shape,
at least until the rear of the wave packet reached x = L.
Next we turn to our numerical results using the more general
initial conditions (3.2), or (3.3). Figure 4 shows the results with
f = 0, for the pressure initial condition (3.2) with the *“tanh”
depth profile (3.6a). The parameter setting isL = 600 km, W =
400 km, yo = W, hy, = 400 m, h, =20 m, b = 55, and R,
= 75 km, £, = 100 cm. Similar results are obtained with f =
—10*s?, but they will not be shown here (see Tang [15]).
The figure shows the contour plots of surface elevation ¢, and
it clearly shows the development of edge waves propagating
in both aongshore directions. The corresponding plots for u
and v show a similar situation (see Tang [15]). This result is
for the SRE radiation boundary condition. The corresponding
energy flux F (3.7) and energy E (3.8) are shown in Fig. 5 (in
fact we plot F/Ay and E/Ax Ay). From the figure for F we
identify aburst of surface gravity wave transients reaching x =
L at about 2—3 h, followed by edge waves at about 7—8 h. The
corresponding decreases in energy E are well correlated with
these energetic bursts of wave activity. In this case, there is no
evidence of wave reflection from the boundaries x = =L for
the modified radiation boundary conditions SRE, SRI, SRI’
and the Orlanski boundary conditions ORE, ORI, while the
second-order radiation boundary conditions are found to per-
form abit better than thefirst-order boundary conditions, mainly
with respect to the passage of the small-amplitudetrailing oscil-
lations (see Fig. 5 for times greater than 10 h). Further, the
corresponding results from doubling the computational domain
are again amost identical (see Fig. 5 for the SRE result).
However, when the same problem is considered for ORE’, Fig.
6 shows that this boundary condition cannot cope with any kind
of wave propagating to the boundary, since strong reflection
happens as soon as waves approach the boundary. The reason
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for the radiation boundary condition SRE.

for this is because ORE’ uses box D for the evaluation of 7
(see Fig. 2), which can be regarded as using adjacent boundary
values rather than interior values.

Miller and Thorpe [4] pointed out that a linear combination
of the three first-order boundary conditions in Section 2,

f = f(ORE’) + f(ORI) — f(ORE), (3.12)
will give a higher order accuracy. This is technically correct,
but it does not lead to a better practical result. We tested this
radiation boundary condition as well. The results clearly show
inFig. 7 that, after the gravity waves reach the boundary, strong
reflection occurs. Thereason for thisistheinadequacy of ORE’,
discussed above.

Next, we show the results for f = —107* s™! for the eddy
initial condition (3.3) and the bottom profile (3.6a). The parame-
ter setting againis L = 600 km, W = 400 km, y, = $W, hy, =
40 m, h, =20m, b =55 and R, = 75 km, ¢, = 45 X
10% cm®/s. Figure 8 shows contour plots of pressure £, and in
Fig. 9 we plot the energy flux F and energy E. These results
are again for the SRE radiation boundary condition. The surface
gravity wave transients are now negligible, while the edge
waves are discernible but not quite as significant as the Kelvin
wave which reaches x = L at about 4 h, followed by the shelf
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FIG. 11. Asfor Fig. 10, but the plots of energy flux F. The solid line is
the result from the doubling the domain, while the dashed line is the result
from the original domain.
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waves which now carry most of the energy flux. When we
consider the corresponding results obtained from doubling the
domain, we find that in this case the radiation boundary condi-
tions SRE, SRI, and SRI’ give comparable and reasonably good
results, although again with a marginal bias in favour of SRE.
The most serious degradation in performance occurs when a
second mode shelf wave arrives at the boundary. The Orlanski
boundary conditions ORE and ORI do not perform as well as
the modified boundary conditions, particularly for the shelf
waves. We also tested the radiation boundary condition ORE'
and Miller and Thorpe's boundary condition (2.31), but again
we found that they give very poor results. If we reduce R, from
75 kmto 50 km, wefind basically similar conclusions, although
in this case there is a degradation in the performance of all
the radiation boundary conditions, and the Orlanski boundary

conditions ORE and ORI give even worse results. The reason
for this is because the second mode shelf wave now is much
stronger than the first mode. Further details can be found in
Tang [15].

Now we show the results for wind stress forcing (3.4) for
the bottom profile (3.6a). Again we use the same parameters
as above but we set R, = 100 km, 7, = 100 cm?/<s, V = 20
km/h, T=18h,t, = 3h,t, = 6 h,and x, = —180 km, X, =
180 km. Figure 10 shows the contour plots of pressure ¢; in
Fig. 11 we show the corresponding results for energy flux F
for the SRE radiation boundary condition; and Fig. 12 shows
the corresponding results for the radiation boundary conditions
SRI, SRI’, ORE, and ORI. The energy flux peak at about t =
12 h is best interpreted as a mixture of an edge wave and a
Kelvin wave, and thisis followed by substantial shelf waves. In
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t, = 3 h for the radiation boundary condition SRE.

this case, all the radiation boundary conditions give comparable
results with the doubled domain before the second mode shelf
wave arrives at the boundary, except SRI, and none of the
radiation boundary conditions deal very satisfactorily with the
second mode shelf wave; but again SRE performs the best.
When t, = 6 h, that is, when we turn off the wind stress forcing
more smoothly, we get more coherent waves, rather than the
more oscillatory waves due to the sudden turning off of the
wind stress forcing. Consequently the results for t, = 6 h agree
better with the doubled domain results (see Tang [15]).
Finally we turn to the results for the tropical cyclone model
(3.59), (3.5b), again using the bottom profile (3.6a), with the
same domain parameters as before, while the parameters for
the wind stress forcing are R, = 100 km, 7,, = 300 cm?/&, V =
20 km/h, T=18h, t; = 3 h,t, = 3 h, and x, = —180 km,
X = 180 km. Figure 13 shows the contour plots of pressure
£, and in Fig. 14 we show the corresponding results for energy
flux F and energy E, again for the SRE radiation boundary
condition. This wind stress forcing models a tropical cyclone
and we find that it mainly generates shelf waves. Again the
radiation boundary conditions SRE performs best, although
now SRI is quite similar (see Fig. 14) while the Orlanski radia-
tion boundary conditions ORE, ORI again cannot cope with
the second mode shelf wave, giving strong reflection after it

reaches the boundary. For more details on this case see Tang
[15].

From the above discussion we can draw the simple conclu-
sion that the modified radiation boundary conditions SRE, SR,
and SRI’ perform better than Orlanski radiation boundary con-
ditions ORE, ORI, and we marginaly favour SRE. All the
radiation boundary conditions have difficulty dealing with the
shelf waves, especialy the second mode shelf wave, possibly
because it tends to be more dispersive.

Further, comparing the radiation boundary condition ORE’
and (3.12) with the other five radiation boundary conditions,
we find that ORE’ and (3.12) are not satisfactory and generally
give poor results.

In addition, we tested the radiation boundary conditions for
the linear bottom profile (1.10b) with the other parameter set-
tings the same as before. Here for this slope we put h, = 2
cm and hy = 400 m. In genera we find the same conclusions
as above, although the results are different in detail (see Tang
[15] for details).

We also tested the radiation boundary conditions with in-
creased amplitudes for the initial conditions and forcing terms
in order to test the role of the nonlinear terms. For the pressure
initial condition (3.2) with the “tanh” bottom profile (3.63), if
we use the same parameter settings as before, we get almost
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identical results to the linear problem (i.e., Egs. (1.1a)—(1.1c)
with the nonlinear terms omitted). We then increased ¢, to 10
m, which is very large and may be unredlistic, but we till
obtained essentially the same results.

For the eddy initial condition (3.3), we find that increasing
the initial amplitude of the eddy results in more nonlinear
behaviour for the eddy itself, but lesswave activity. This aspect
we have discussed elsewhere (Grimshaw et al. [16, 17]).

We aso considered the wind stress forcing (3.4) with 7,
increased to 200 cm?/<?, and the other parameter settings the

109

same as before. Compared with the case 7, = 100 cm?/s? shown
in Figs. 10 and 11 we found similar results, but as we increase
the forcing, more energy is transferred to the second peak,
which correspondsto the shelf wave, and thereislessoscillation
after thispeak. Theradiation boundary condition (SRE here) per-
formsjust as well when the forcing amplitude is increased. For
the tropical cyclone model the results for changing the forcing
amplitude are similar and discussed in detail in Tang [15].

4. SUMMARY

In this paper we have examined three versions (2.4a)—(2.4c)
of the Orlanski radiation boundary conditions, as well as three
new modifications (2.6a), (2.6b), (2.9). These have been tested
in the context of the shallow water equations in configurations
related to storm surge simulations. Thus we have concentrated
on the ability of the radiation boundary conditions to transmit
coastally trapped waves. Importantly, we have used either local -
ized initial conditions or forcing mechanisms, which remain
localized within the interior of the computational domain, in
order to focus on the transmission of freely propagating waves.
Thus we do not here consider the issue of the transmission of
forced waves. Also, here wedo not consider theissue of oblique
waves, since the variable bottom topography in the cross-shelf
direction has the effect of guiding the waves in the along-
shore direction.

Of the six radiation boundary conditions tested, only ORE'
(and (3.12)) was totally unsatisfactory. Of the remaining condi-
tions we find that the modified radiation boundary conditions
SRE, SRI, and SRI" perform better than the Orlanski radiation
boundary conditions ORE, ORI. Further, overall, SRE gave
marginally the best performance. But all the conditions have
difficulties with the shelf waves, particularly for the more dis-
persive second mode. Indeed, we can infer from our results
that the more the waves have the structure of dispersive wave
packets, the poorer the performance of al the radiation bound-
ary conditions. But, that having been admitted, our results show
that at least for the time span considered here (up to three days)
either of the two modified radiation boundary conditions SRE,
SRI can be confidently used in storm surge simulations.

The numerical model used here is a two-dimensional, or
depth-integrated, storm surge model. But we would not antici-
pate any major difficulty inincorporating the radiation boundary
conditions tested here into three-dimensional models, provided
that the fluid is assumed homogeneous and the nomenclature
three-dimensiona refers to the allowance for vertical shear in
the horizontal currents due to parameterised eddy viscosities.
However, the development of radiation boundary conditions
analogous to those considered here for density-stratified storm
surge models remains a topic for future investigation.
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